
1 | P a g e

2 | P a g e

INDEX

Activity and Intent

User Interface in android

Basic views

Advanced views

Displaying picture & Menu with views

SMS, Phone

3 | P a g e

ACTIVITIES AND INTENT

If you have worked with C, C++ or Java programming language then
you must have seen that your program starts from main() function.
Very similar way, Android system initiates its program with in an
Activity starting with a call on onCreate() callback method. There is a
sequence of callback methods that start up an activity and a
sequence of callback methods that tear down an activity as shown in
the below Activity life cycle diagram: (image courtesy : android.com)

4 | P a g e

USER INTERFACE IN ANDROID

Views:-

The basic building block for user interface is a View object which is created from
the View class and occupies a rectangular area on the screen and is responsible
for drawing and event handling. View is the base class for widgets, which are
used to create interactive UI components like buttons, text fields, etc.

ViewsGroup:-

The ViewGroup is a subclass of View and provides invisible
container that hold other Views or other ViewGroups and define
their layout properties.

At third level we have different layouts which are subclasses of
ViewGroup class and a typical layout defines the visual structure for an
Android user interface and can be created either at run time using
View/ViewGroup objects or you can declare your layout using simple
XML file main_layout.xml which is located in the res/layout folder of
your project.

5 | P a g e

ACTION BAR:-

The action bar is an important design element, usually at the top of
each

screen in an app, that provides a consistent familiar look between
Android

apps. It is used to provide better user interaction and experience by

supporting easy navigation through tabs and drop-down lists. It also

provides a space for the app or activity’s identity, thus enabling the
action bar was introduced in Android 3.0, although support for older
versions can be achieved by using the Android Support Library. Before
its release, the Options Menu was usually used to provide the actions
and functionality that are now put on the action bar. The action bar is
included by default in all activities for apps with a minSdkVersion of 11.
You can disable it and opt to only use the options menu, but for better
user experiences it’s better to use the action bar as it is visible to the
user, while the options menu needs the user to request it and the user
might not be aware of its existence in the first place

http://developer.android.com/tools/support-library/index.html

6 | P a g e

LAYOUT IN ANDROID:-

Android UI Layouts. Android Layout is used to define the user interface which
holds the UI controls or widgets that will appear on the screen of
an android application or activity. ... A View is defined as the user interface which is
used to create an interactive UI components such as TextView, EditText, Radio
Button, etc.

7 | P a g e

DISPLAY ORIENTATION:-

The screen orientation attribute is provided by the activity element in
the Android Manifest.Xml file. The orientations provided by the activity
are Portrait, Landscape, Sensor, Unspecified and so on. To perform a
screen orientation activity you define the properties in the Android
Manifest.Xml file.

Example

<activity
 android:name="com.screenorientation.MainActivity"
 android:label="@string/app_name"
 android:screenOrientation="portrait">

Portrait: In a portrait mode the screen will be taller not wider.

LandScape: In a landscape mode the screen will be wider not taller.

Value Description
unspecified It is the default value. In such case, system chooses

the orientation.
portrait taller not wider
landscape wider not taller
sensor Orientation is determined by the device orientation

sensor.

8 | P a g e

BASIC VIEWS

TEXTVIEW:-

A TextView displays text to the user and optionally allows them to edit
it. A TextView is a complete text editor, however the basic class is
configured to not allow editing.

9 | P a g e

ANDROID BUTTON:-

Android Button represents a push-button. The android.widget.Button
is subclass of TextView class and CompoundButton is the subclass of
Button class.

There are different types of buttons in android such as RadioButton,
ToggleButton, CompoundButton etc.

10 | P a g e

IMAGE BUTTON:-

In android, Image Button is a user interface control that is used to
display a button with an image and to perform an action when a user
clicks or taps on it.

By default, the ImageButton looks same as normal button and it
performs an action when a user clicks or touches it, but the only
difference is we will add a custom image to the button instead of text.

Following is the pictorial representation of using Image Buttons in
android applications.

In android, we have different types of buttons available to use based
on our requirements, those are Button, ImageButton, ToggleButton,
and RadioButton.

In android, we can add an image to the button by
using <ImageButton> attribute android:src in XML layout file or by
using the setImageResource() method.

In android, we can create ImageButton control in two ways either in
the XML layout file or create it in the Activity file programmatically.

https://www.tutlane.com/tutorial/android/android-button-with-examples

11 | P a g e

EDIT TEXT:-

 A user interface element for entering and modifying text. When you
define an edit text widget, you must specify
the R.styleable.TextView_inputType attribute. For example, for plain
text input set inputType to "text":

 <EditText
 android:id="@+id/plain_text_input"
 android:layout_height="wrap_content"
 android:layout_width="match_parent"
 android:inputType="text"/>

Choosing the input type configures the keyboard type that is shown,
acceptable characters, and appearance of the edit text. For example, if
you want to accept a secret number, like a unique pin or serial
number, you can set inputType to "numericPassword". An inputType of
"numericPassword" results in an edit text that accepts numbers only,
shows a numeric keyboard when focused, and masks the text that is
entered for privacy.

See the Text Fields guide for examples of
other R.styleable.TextView_inputType settings.

This widget does not support auto-sizing text.

https://developer.android.com/reference/android/R.styleable#TextView_inputType
https://developer.android.com/guide/topics/ui/controls/text
https://developer.android.com/reference/android/R.styleable#TextView_inputType

12 | P a g e

CHECKBOX:-

CheckBox belongs to android.widget.CheckBox class. Android

CheckBox class is the subclass of CompoundButton class. It is

generally used in a place where user can select one or more than

choices from a given list of choices. For example, selecting hobbies.

13 | P a g e

TOGGLE-BUTTON:-

Android Toggle Button with Examples. In android, Toggle Button is a
user interface control that is used to display ON (Checked) or OFF
(Unchecked) states as a button with a light indicator.
The ToggleButton is useful for the users to change the settings
between two states either ON or OFF.

RADIO BUTTON:-

RadioButton is a two states button which is either checked or
unchecked. If a single radio button is unchecked, we can click it to
make checked radio button. Once a radio button is checked, it cannot
be marked as unchecked by user.

RadioButton is generally used with RadioGroup. RadioGroup contains
several radio buttons, marking one radio button as checked makes all
other radio buttons as unchecked.

14 | P a g e

RADIO GROUP:-

This class is used to create a multiple-exclusion scope for a set of radio
buttons. Checking one radio button that belongs to a radio group
unchecks any previously checked radio button within the same group.

Intially, all of the radio buttons are unchecked. While it is not possible
to uncheck a particular radio button, the radio group can be cleared to
remove the checked state.

15 | P a g e

PROGRESS BAR:-

Android ProgressBar is a graphical view indicator that shows some
progress. Android progress bar displays a bar representing the
completing of the task. Progress bar in android is useful since it gives
the user an idea of time to finish its task.

AUTOCOMPLETE TEXTVIEWS:-

Autocomplete TextView in Android. AutocompleteTextView is an
editable text view that shows completion suggestions automatically
while the user is typing. The list of suggestions is displayed in a drop
down menu from which the user can choose an item to replace the
content of the edit box with.

16 | P a g e

ADVANCED VIEWS

TIMEPICKER VIEW:-

Time Picker in Android is a widget that lets users to select the time of
the day in either AM/PM or 24 hours mode.

The displayed time in the widget consists of hours, minutes, and the
clock format. And, in order to show add this widget in your mobile app,
you’ll have to use a TimePickerDialog class.

In today’s Android app tutorial, we’ll see how to add time picker in
Android app to allow users pick time by hour, minute, and clock
format.

17 | P a g e

DATEPICKER VIEW:-
In Android, DatePicker is a widget used to select a date. It
allows to select date by day, month and year in your custom
UI (user interface). If we need to show this view as a dialog
then we have to use a DatePickerDialog class. For selecting
time Android also provides timepicker to select time.

https://abhiandroid.com/ui/datepicker/
https://abhiandroid.com/ui/timepicker

18 | P a g e

LIST VIEW:-

Android ListView is a view which groups several items
and display them in vertical scrollable list. The list items
are automatically inserted to the list using an Adapter
that pulls content from a source such as an array or
database.

IMAGE VIEW:-

In Android, ImageView class is used to display an image file in
application. Image file is easy to use but hard to master in Android,
because of the various screen sizes in Android devices. An android is
enriched with some of the best UI design widgets that allows us to
build good looking and attractive UI based application.

https://abhiandroid.com/ui/imageview/

19 | P a g e

MENU:-

Defining a Menu in XML. For all menu types, Android provides a
standard XML format to define menu items. ... You can then inflate
the menu resource (load it as a Menu object) in your activity or
fragment. Using a menu resource is a good practice for a few reasons:
It's easier to visualize the menu structure in XML.

20 | P a g e

DISPLAYING PICTURES & MENU WITH VIEWS

IMAGE VIEW:-

Android ImageView is used to display an image file. Android also has
an Image button. As the name suggests,
the ImangeButton component is a button with an image on. The
ImageButton is represented by the Android
class android.widget.ImageButton. In this tutorial we’re going to
implement both android ImageView and ImageButton in our
application.

21 | P a g e

GALLERY VIEW:-

In Android, Gallery is a view used to show items in a center locked,
horizontal scrolling list and user will select a view and then user
selected view will be shown in the center of the Horizontal list. The
items in Gallery are added using Adapter just like in ListView or
GridView.

22 | P a g e

IMAGE SWITCHER:-

Sometimes you don't want an image to appear abruptly on the screen,
rather you want to apply some kind of animation to the image when it
transitions from one image to another. This is supported by android in
the form of ImageSwitcher.

An image switcher allows you to add some transitions on the images
through the way they appear on screen. In order to use image
Switcher, you need to define its XML component first. Its syntax is
given below −

<ImageSwitcher
 android:id="@+id/imageSwitcher1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_centerHorizontal="true"
 android:layout_centerVertical="true" >
</ImageSwitcher>

23 | P a g e

GRID VIEW:-

In android GridView is a view group that display items in two
dimensional scrolling grid (rows and columns), the grid items are not
necessarily predetermined but they are automatically inserted to the
layout using a ListAdapter. Users can then select any grid item by
clicking on it. GridView is default scrollable so we don’t need to
use ScrollView or anything else with GridView.

GridView is widely used in android applications. An example of
GridView is your default Gallery, where you have number of images
displayed using grid.
Adapter Is Used To Fill Data In Gridview: To fill the data in a GridView
we simply use adapter and grid items are automatically inserted to a
GridView using an Adapter which pulls the content from a source such
as an arraylist, array or database. You can read full Adapter tutorial
here.

https://abhiandroid.com/ui/gridview/
https://abhiandroid.com/ui/gridview/
https://abhiandroid.com/ui/scrollview/
https://abhiandroid.com/ui/gridview/
https://abhiandroid.com/ui/gallery/
https://abhiandroid.com/ui/adapter/
https://abhiandroid.com/ui/adapter/
https://abhiandroid.com/ui/adapter
https://abhiandroid.com/ui/adapter

24 | P a g e

OPTIONS MENU:-

Android Option Menus are the primary menus of android. They can be
used for settings, search, delete item etc.

Here, we are going to see two examples of option menus. First, the
simple option menus and second, options menus with images.

Here, we are inflating the menu by calling the inflate() method
of MenuInflater class. To perform event handling on menu items, you
need to override onOptionsItemSelected() method of Activity class.

25 | P a g e

CONTEXT MENU:-

The Android platform provides a few standard menus you can use in
your apps. The context menu appears when users long-press user
interface items, pressing the item and holding it until the menu
appears. Android users are typically accustomed to this type of
interaction, as it is standard for system functions such as altering
home screen icons. The Android developer guide compares the
context menu to right-clicking on a computer. Implementing the
context menu is straightforward, and is a key ingredient in many
applications.

26 | P a g e

SMS, PHONE

SEND-SMS:-
In this final section, I’ll show you how to send SMS messages directly

from your app, using Android’s SmsManager class.

Text messaging can be a handy way of encouraging users to invite

friends and family to sign up for your application, for example you

could generate bonuses or discount codes that can then be shared

over SMS. Messaging is also a convenient way of sharing information

that the user has discovered in your app, or for sending notifications,

for example if you’ve developed a calendar app then your users might

appreciate the ability to send event reminders over SMS.

I’m going to implement this functionality in a separate SMSActivity, so

let’s start by creating a new layout resource file:

Select ‘File > New > Layout resource file’ from the Android Studio

toolbar.

Name this file ‘activity_sms.xml.’

Open your new layout file, and then add the following:

27 | P a g e

XML_FILE:-

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android
"

xmlns:tools="http://schemas.android.com/tools"

android:id="@+id/activity_main"

android:orientation="vertical"

android:layout_width="match_parent"

android:layout_height="match_parent"

tools:context="com.jessicathornsby.telephonesms.SMSActivity
">

<EditText

android:id="@+id/phoneNumber"

android:layout_width="match_parent"

android:layout_height="wrap_content"

android:hint="Enter phone number"

android:inputType="phone" />

28 | P a g e

<EditText

android:id="@+id/message"

android:hint="Message"

android:layout_width="match_parent"

android:layout_height="wrap_content"/>

<Button

android:id="@+id/sendSMS"

android:text="Send SMS"

android:layout_width="wrap_content"

android:layout_height="wrap_content"/>

</LinearLayout>

This is a simple UI where the user can send SMS messages by

entering any valid mobile number, some message text, and then

giving the ‘Send SMS’ button a tap.

Our ‘activity_sms.xml’ needs a corresponding Java class, so select

‘File > New > Java class’ from the Android Studio toolbar, and name

this class ‘SMSActivity.’

29 | P a g e

JAVA

import android.support.v4.app.ActivityCompat;

import android.support.v7.app.AppCompatActivity;

import android.os.Bundle;

import android.os.Build;

import android.widget.Button;

import android.support.v4.content.ContextCompat;

import android.widget.EditText;

import android.util.Log;

import android.Manifest;

import android.content.pm.PackageManager;

import android.telephony.SmsManager;

import android.text.TextUtils;

import android.widget.Toast;

import android.view.View;

public class SMSActivity extends AppCompatActivity {

 private static final int PERMISSION_REQUEST_CODE = 1;

 private Button sendSMS;

30 | P a g e

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_sms);

 final EditText phoneNumber = (EditText)
findViewById(R.id.phoneNumber);

 if (Build.VERSION.SDK_INT >= 23) {

 if (checkPermission()) {

 Log.e("permission", "Permission already granted.");

 } else {

 requestPermission();

 }

 }

 final EditText smsText = (EditText)
findViewById(R.id.message);

 sendSMS = (Button) findViewById(R.id.sendSMS);

 sendSMS.setOnClickListener(new View.OnClickListener() {

31 | P a g e

 @Override

 public void onClick(View view) {

 String sms = smsText.getText().toString();

 String phoneNum = phoneNumber.getText().toString();

 if(!TextUtils.isEmpty(sms) &&
!TextUtils.isEmpty(phoneNum)) {

 if(checkPermission()) {

//Get the default SmsManager//

 SmsManager smsManager =
SmsManager.getDefault();

//Send the SMS//

 smsManager.sendTextMessage(phoneNum, null,
sms, null, null);

 }else {

 Toast.makeText(SMSActivity.this, "Permission
denied", Toast.LENGTH_SHORT).show();

 }

 }

32 | P a g e

 }

 });

 }

 private boolean checkPermission() {

 int result =
ContextCompat.checkSelfPermission(SMSActivity.this,
Manifest.permission.SEND_SMS);

 if (result == PackageManager.PERMISSION_GRANTED) {

 return true;

 } else {

 return false;

 }

 }

 private void requestPermission() {

 ActivityCompat.requestPermissions(this, new
String[]{Manifest.permission.SEND_SMS},
PERMISSION_REQUEST_CODE);

 }

33 | P a g e

 @Override

 public void onRequestPermissionsResult(int requestCode,
String permissions[], int[] grantResults) {

 switch (requestCode) {

 case PERMISSION_REQUEST_CODE:

if (grantResults.length > 0 && grantResults[0] ==
PackageManager.PERMISSION_GRANTED) {

 Toast.makeText(SMSActivity.this,

 "Permission accepted",
Toast.LENGTH_LONG).show();

 } else {

 Toast.makeText(SMSActivity.this,

 "Permission denied",
Toast.LENGTH_LONG).show();

 Button sendSMS = (Button)
findViewById(R.id.sendSMS);

 sendSMS.setEnabled(false);

 }

 break;

34 | P a g e

 }

 }

}

Next, open your project’s Manifest and add the SEND_SMS

permission. We also need to declare the SMSActivity component:

<?xml version="1.0" encoding="utf-8"?>

<manifest
xmlns:android="http://schemas.android.com/apk/res/android
"

 package="com.jessicathornsby.telephonesms">

 <uses-permission
android:name="android.permission.READ_CONTACTS" />

 <uses-permission
android:name="android.permission.CALL_PHONE" />

 <uses-permission
android:name="android.permission.SEND_SMS"/>

 <uses-feature android:name="android.hardware.telephony"
android:required="true" />

 <application

 android:allowBackup="true"

 android:icon="@mipmap/ic_launcher"

 android:label="@string/app_name"

35 | P a g e

 android:roundIcon="@mipmap/ic_launcher_round"

 android:supportsRtl="true"

 android:theme="@style/AppTheme">

 <activity android:name=".MainActivity">

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category
android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 <activity android:name=".SMSActivity">

 </activity>

 </application>

</manifest>

The last task is ensuring the user can reach SMSActivity from the

app’s MainActivity. Open your project’s activity_main.xml file and add

a ‘launchSMS’ button:

36 | P a g e

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android
"

 xmlns:tools="http://schemas.android.com/tools"

 android:id="@+id/activity_main"

 android:orientation="vertical"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

tools:context="com.jessicathornsby.telephonesms.MainActivit
y">

 <EditText

 android:id="@+id/phoneNumber"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:hint="Enter phone number"

 android:inputType="phone" />

37 | P a g e

 <Button

 android:id="@+id/call"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:onClick="call"

 android:text="Call" />

 <Button

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:id="@+id/contacts"

 android:text="Load contacts" />

//Add the following//

 <Button

 android:id="@+id/launchSMS"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

38 | P a g e

 android:layout_gravity="center_horizontal"

 android:onClick="launchSMS"

 android:text="Launch SMS Activity" />

 <ListView

 android:id="@+id/listview"

 android:layout_width="match_parent"

 android:layout_height="match_parent" />

</LinearLayout>

